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Vibrational motions in optically excited polyacetylene and polydiacetylene oligomers are calculated using
potential surfaces obtained from the collective electronic oscillators (CEO) technique. The role of the effective
conjugation coordinate (ECC) in the relaxation processes following an impulsive vertical excitation from the
ground state is demonstrated. Real-space analysis of the electronic transition density matrices shows the charge
and bond-order redistribution taking place upon photoexcitation.

I. Introduction

The major features of the vibrational Raman and infrared
spectra of several families of conjugated molecules, such as
polyacetylene and carotenoids, can be accounted for using a
collective effective conjugation coordinate (ECC).1-9 In this
paper, we present a simulation study of the ultrafast vibrational
relaxation processes of polyenes following photoexcitation to
an excited-state potential surface. The nature of the ECC
coordinate and the mechanism for its excitation are demon-
strated.

The ECC has been originally introduced to describe the
Raman spectra of polyenes and polyacetylene. Out of the many
vibrational degrees of freedom in large polyenes, only two
intense bands around 1500 and 1150 cm-1 dominate the Raman
spectra, and their intensity is larger by orders of magnitude than
that of other Raman active bands. [The laser excitation in those
experiments wasλexc ) 1064 nm, below the energy gap which
for polyacetylene is 1.4 eV (890 nm).12] For example, intrans-
dodecahexaene, a medium-size polyacetylene oligomer, the ratio
between the Raman intensity integrated over the entire C-H
stretching region (2850-2950 cm-1) and the strongest Raman
band is about 10. Resonant Raman spectra generally show few
lines (in most cases corresponding to totally symmetric vibra-
tions) which are strongly coupled to the transition from the
ground state to the excited state.10,11 The similarity of the
resonant and the off-resonant Raman spectra of polyacetylene
suggests that in this case it may be possible to describe the
Raman process using a two-state model. The relevant vibrational
coordinate connects the equilibrium geometry of the excited state
with the equilibrium geometry of the ground state. The structural
parameter most heavily modified by the lowest optical transition
in polyenes is the degree of bond alternation along the chain.6-8

In particular, the double CdC bonds become longer, while the
single C-C bonds become shorter. The ECC coordinate for

polyacetylene has therefore been defined as

Definitions of the ECC based on spectroscopic grounds were
also proposed for other conjugated polymers (e.g., poly-
thiophene, poly-p-phenylenevinylene).5 For finite-size trans-
polyenes (such as carotenoids), the simple generalization of eq
1 is

The present study shows how to improve this definition by
directly computing the nuclear relaxation of the molecule
following a transition from the ground state to an excited state,
thus introducing different weighting factors for each of the
stretching coordinates. Definitions 1 and 2 assume that the
variation of the equilibrium geometry induced by the photo-
excitation mainly involves stretching degrees of freedom and
that it can be approximated by a finite displacement∆R along
the ECC coordinate.

Conjugated molecules such as push-pull polyenes exhibit
both a high Raman cross section and an intense infrared
absorption for vibrational bands with high ECC character. A
model based on this vibrational coordinate has been introduced
to explain the relationship between the observed infrared and
Raman intensities.9 The strong infrared intensity is related to
high charge fluxes associated with the ECC of theπ system
polarized by the donor-acceptor pair. The strong doping-
induced infrared bands of polyacetylene (IRAV) have been
similarly attributed to large charge fluxes during ECC oscilla-
tions.1

The ECC further successfully accounts for the magnitude of
the vibrational contribution to the static hyperpolarizabilities
of conjugated molecules. The electron-phonon coupling along
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this vibrational coordinate is strong, since the changes induced
in the electronic wave function by this nuclear motion are most
relevant for the optical response.13 When an electric field is
applied to a molecule, the nuclei experience a force and are
driven into a new equilibrium geometry. In the harmonic
approximation, it is possible to calculate this geometry change
and to derive from it closed expressions for the vibrational
contributions to the molecular hyperpolarizabilities.14 It has been
shown that in conjugated systems the vibrational contribution
to the static hyperpolarizabilities which generally comes from
all vibrational normal modes14 can be adequately approximated
by the contribution of the ECC relaxation process15-17

The quantities∂µi/∂R, ∂Rij/∂R, and ∂âjkl /∂R (i, j, k, and l
indicate the Cartesian components) are respectively related to
infrared intensities, Raman, and hyper-Raman cross sections of
vibrations with high ECC character. (F-1)RR represents the
diagonal ECC component of the inverse harmonic force field.

We have developed a computer code MDCEOV (molecular
dynamics CEO algorithm using a Verlet integrator;18 this
program described in section II uses a molecular dynamics
algorithm18) based on the electronic density matrix and on the
collective electronic oscillators (CEO) description of molecular
excitations.19-23 In section III, we demonstrate how analysis of
the time evolution of the nuclear coordinates following an
impulsive excitation shows clearly the features of the ECC
coordinate discussed above for polyenes. It is possible to relate
this coordinate to the time evolution of the ground- and the
excited-state energy. Our simulations provide a direct first-
principles test for the phenomenological ECC model; the ECC
can be directly identified and characterized by monitoring the
time evolution of the bond lengths. Computations performed
on the polyene C10H12 with five CdC bonds show that upon
excitation the time evolution of the bond lengths involves the
stretching of the double CdC bonds, accompanied by the
shrinking of the single C-C bonds, as expected from the ECC
model. We have further employed the same simulation algorithm
to compute the vibrational mode couplings in polydiacetylene
(PDA). Our calculations reveal strong interactions between
stretching and bending vibrations, as observed in recent 5 fs
pump-probe measurements.24

II. The Molecular Dynamics CEO Verlet Algorithm

Simulations were carried out using a molecular dynamics
method based on the collective electronic oscillators (CEO)
approach, which generates excited-state surfaces while avoiding
the direct computation of excited-state many-electron wave
functions. Computation of excited-state wave functions is
prohibitively expensive, particularly when it needs to be repeated
for many nuclear configurations along a trajectory. The main
bottleneck in molecular dynamics simulations of photoinduced
processes is the computation of excited-state properties: energy
surfaces, their gradients with respect to nuclear coordinates, and
non adiabatic couplings.25 The CEO provides a fast, inexpensive
algorithm for computing all of these quantities. It is based on a
reduced description of the electronic structure which uses a

minimal amount of relevant excited-state information and
focuses on the time-dependent single-electron density matrix
Fij(t) ≡ 〈Ψ(t)|ci

†cj|Ψ(t)〉 of the molecule driven by an external
optical fieldε(t). HereΨ(t) is the many-electron wave function,
andci

†(ci)’s are the fermionic creation (annihilation) operators
for the atomic orbitaløi, which satisfy the Fermi anticommu-
tation relationships

The molecular Hamiltonian can be written as26

The single-electron matrix elementstij, Coulomb matrix ele-
ments〈ij |kl〉 ≡ (ik|jl ), and dipole moment matrix elementsµij

may be expressed in terms of the atomic orbitalsøi(r )

When the molecule is driven optically, its wave function
|Ψ(t)〉 and consequently also the single-electron density matrix
F(t) ) Fj + δF(t) become time-dependent. HereFj represents
the ground-state density matrix, and the field-induced component
δF(t) is determined by solving the Heisenberg equations of
motion for ci

†cj. The many-body hierarchy is closed by invok-
ing the time-dependent Hartree-Fock (TDHF) ansatz (i.e.,
assuming that|Ψ(t)〉 is represented by a single Slater determinant
at all times), resulting in closed nonlinear equations of motion
for δF(t).20 δF(t) is further expanded in the eigenmodesêV of
the effective Liouville operatorL(x) representing the linearized
TDHF equations (x denotes the set of nuclear coordinatesxR)

The electronic normal modes|êV(x)) correspond to the transition
density matrices between the ground|0〉 and excited|V〉 states:
(êV)ij ≡ 〈V|ci

†cj|0〉. The eigenvaluesΩV(x) provide the excita-
tion frequencies. Solving eq 9 at various nuclear configurations
x yields the variation of the excitation energiesΩV with x. Thus,
the excited-state adiabatic surfaceEV(x) can be computed by
simply adding ΩV(x) to the ground-state adiabatic surface
E0(x)

The ground-state energy is obtained directly from the Hartree-
Fock ground-state density matrix

The Liouville operatorL in eq 9 is given by

F is the Fock matrix, andV is the operator representing the
electron-electron interaction. For a closed shell system,V is
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defined through the action of the Coulomb operatorJ and the
exchange operatorK on a generic matrixη in the single electron
space as follows:

The elements of the Fock matrix are

Vibronic coupling enters eq 9 through the dependence of the
electronic Hamiltonian matrix elementstij, (ij |kl), and thusL
on nuclear geometry.

In regions of nuclear configuration space far from avoided
crossing or conical intersection points, the nuclear degrees of
freedom can be usually treated classically and satisfy Newton’s
equation of motion

Vibrational dynamics thus requires the gradients of the excited-
state surfaces, representing the classical forces acting on the
nuclei. These gradients can be computed through the derivative
of eq 9 with respect to nuclear coordinates. As will be shown
in the Appendix, this results in the expectation value of the
derivative of the Liouville operatorL on a given excited state
(we use a superscriptx to denote d/dx, and we drop the
coordinate subscriptR)

This form resembles the Hellmann-Feynman theorem for the
computation of energy gradients.27 In eq 16, we have introduced
a scalar product between vectors in Liouville space

With respect to this scalar product, the Liouville operator is
hermitian: (Lη1,η2) ) (η1,Lη2).

It is possible to express this gradient as a finite difference
(for sufficiently small∆)

Finally, the gradient of the excited-state hypersurfaceEV ≡ E0

+ ΩV is given by

and the ground-state energy derivative can be expressed as

The present computations were carried out using the MD-
CEOV program, which extends the CEO code,20,22,23,28 by
implementing the computation of the gradients of the excitation

energies and a Verlet-style molecular dynamics trajectory
generator.18 The CEO code uses the ZINDO/S semiempirical
spectroscopic Hamiltonian. Excited-state molecular dynamics
computations require the CEO eigenvaluesΩV and eigenvectors
êV of the Liouville operatorL introduced previously. The
Liouville operator is a superoperator acting in the space of single
electron density matrices. It is a tetradic operator that depends
on four indexes

The matrix elements ofL can be calculated by using eqs 12
and 21. A transformation of indexes such as{ij} f N(i - 1) +
j and{kl} f N(k - 1) + l, N being the basis set size, brings
Lijkl into a two indexes matrixL{ij}{kl} suitable for standard
diagonalization algorithms. Since the number of elements in
Lijkl grows with the fourth power of the basis set size, then except
for small systems, it is generally not possible to handle the full
matrix by conventional diagonalization approaches. To over-
come this difficulty, we introduced a Lanczos algorithm for the
computation of the low-lying eigenvalues ofL.28 Usually, only
a few eigenvalues are sufficient for the computation of the
optical response. A strict convergence of the eigenvectorsêV is
required for a reliable computation of the excitation energy
gradient,ΩV

x ) (êV|Lx|êV). To reduce the time requirements of
the CEO Lanczos algorithm, we interfaced our code with the
public domain ARPACK package.29 This library is especially
designed to solve large eigenvalue problems and gives a set of
well-converged orthogonal eigenvectorsêV. The basic idea
behind both Lanczos and ARPACK algorithms is the iterated
use of the definition of the action ofL on a vectorη to construct
from a suitable first guess a sequence of vectors. These vectors
span a Krylov subspace used to approximate the eigenvectors
and eigenvalues. In the Lanczos algorithm, the Krylov space is
used to approximate just one eigenvalue/eigenvector at a time.
A sequence of eigenvalues is then generated through a deflation
technique using the previously computed eigenvectors. In
contrast, the ARPACK algorithm directly computes a set of
eigenvalues and eigenvectors using a variant of the Arnoldi
algorithm known as the implicitly restarted Arnoldi method.
Implicit restarting provides a way to extract the important
information from large Krylov subspaces, avoiding the storage
and numerical difficulties associated with the standard Arnoldi
approach. This is accomplished by continually compressing the
meaningful information into a fixed size Krylov subspace.
Details of this technique can be found in ref 29. Since the
Liouville operator is not hermitian, special care needs to be taken
when applying the Lanczos approach for the CEO.28 The
ARPACK algorithm can handle general nonhermitian matrices
such asL. Similar to the Lanczos algorithm, all it needs is to
define the action of the Liouville operatorL on a generic vector
η. Another attractive feature of the eigensolver ARPACK is
the possibility of easily implementing the parallel version of
the library, P•ARPACK, to substantially improve the perfor-
mance. The ground-state energy surfaces and vibrational
frequencies may be improved by using different semiempirical
Hamiltonians such as AM1 and PM3, parametrized explicitly
to reproduce experimental geometries. To integrate the classical
equations of motion for the nuclear coordinates, we used a
Verlet-type algorithm, commonly used in molecular dynamics
simulations,18 which is more stable and efficient than a more
general Runge-Kutta integration. In particular, the Verlet
algorithm is known to conserve the total energy over a long
time scale.30
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We have tested the MDCEOV by performing molecular
dynamics simulations on the first excited state of formaldehyde,
which mainly involves the excitation of the electronic charge
on the CdO double bond. Analysis of the CEO eigenvector
corresponding to the transition to this state shows that it
corresponds to the HOMO-LUMO transition. We have com-
puted a 500 fs trajectory following a vertical impulsive transition
from the ground-state energy minimum (C2V point group) to
the first excited state. The results are shown in Figure 1. From
the nature of the electronic excitation, we expect a major
vibrational relaxation on the CdO bond. The two C-H bonds
relax as well, but their vibrational amplitude is lower. Im-
mediately following the excitation, we observe the shrinking
of the C-H bonds, together with the stretching of the CdO
bond. This can be rationalized by noting that excitation of the
CdO bond weakens this bond so that the excited state has a
longer bond length. On the other hand, upon excitation, the
electronic charge flux brings more bonding charge into the C-H

region, thus lowering the equilibrium C-H distance in the
excited state. At longer times, it is possible to follow the
evolution of the out-of-plane angle formed by the CdO bond
with the plane defined by the two C-H bonds. In the ground
state, this angle is zero (planar geometry). The first excited state
is non planar, but its gradient, in correspondence of the ground-
state minimum geometry, does not have an out-of-plane
component. The planar ground-state geometry thus corresponds
to an unstable conformation of the first excited state. This can
be inferred from the potential curve along the out-of-plane angle
depicted in Figure 1. After∼50 fs, the out-of-plane bending
vibration is activated by numerical noise, which finally brings
some out-of-plane contributions to the gradient in the first
excited state. In reality, the interaction of the excited molecule
with the bath degrees of freedom should induce the out-of-plane
motion. Note that the time-dependent out-of-plane coordinate
shows an oscillation around an average angle of more than 20°,
as expected from the potential minimum.

Figure 1. Upper panels: structure of the formaldehyde and definition of the out-of-plane angle. Middle panels: time evolution of the bond lengths
and the bond angles following a vertical excitation from the ground-state equilibrium energy to the first excited state (Ω ) 3.83 eV). Lower panels:
time evolution of the out-of-plane angle and potential energy curve of the first excited state along this angle.
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Figure 2. Upper panel: normalized linear absorption spectrum of the polyacetylene oligomer with five double bonds. Lower panels: CEO plots
of the electronic oscillators corresponding to the electronic transitions showing in the spectrum. See text for the description of the modes.
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Figure 3. Upper panel: normalized linear absorption spectrum of the polydiacetylene oligomer with five triple bonds. Lower panels: CEO plots
of the electronic oscillators corresponding to the electronic transitions showing in the spectrum. See text for the description of the modes.
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III. Application to Polyacetylene and Polydiacetylene
Oligomers

From the CEO calculation of the electronic excitations of a
molecule, it is possible to obtain the linear response to an electric
field, e.g. ,the UV-vis absorption spectra.22 This is shown in
Figure 2 and Figure 3 for the two conjugated oligomers studied.

In analogy with vibrational spectroscopy, where the various
transitions are related to nuclear normal modes, here each band
can be related to an electronic oscillator which describes a
collective electronic excitation. The modes corresponding to the
dominant bands of the computed linear absorption spectra are
also displayed in Figures 2 and 3. The plots of the CEO

Figure 4. Upper panel: ground-state one-electron density matrix of the polyacetylene oligomer C10H12. Atom numbering is shown on the chemical
structure. The circle and box markers point to the matrix elements corresponding to the central single and double bonds, respectively. Hydrogen
atoms are not shown. Lower panel: one-electron transition density matrix for the lowest excited state (Ω ) 3.37 eV) of the polyacetylene oligomer.
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eigenmodes are a suitable contraction of the eigenvector (êV)ij

corresponding to a given electronic transition characterized by
the excitation energyΩV. The contraction from the full atomic
orbitals basis set{øi} to an atomic site representation{A} is
useful to ease the visualization of the nature of the excitation.
The contraction scheme adopted here for a generic transition
density matrixê is

The diagonal matrix elements in the atomic site representation,
êAA, are given by the sum of the elements ofê pertaining to the
atomic orbitals centered on the atomA, whereas the off diagonal
elements,êAB, are related to the sum of the squares of the matrix
elements ofê corresponding to the atomic orbitals centered on
A and onB, respectively. The diagonal elements ofê represent
the atomic charges induced upon excitation, and the off-diagonal
elements are known as coherences. The coherence between two
chemically bonded atoms is related to the variation of the bond
order induced by the electronic excitation. The same contraction
scheme may be also used to represent the ground-state density
matrix, Fj. This representation of the electronic oscillators has

been used in previous CEO studies of optical excitations of
conjugated systems.21-23 Figures 2-4 and 8 display the color
maps of the contracted elements of the CEO transition density
matrices contracted in the atomic site representation. The
hydrogen atoms are not shown in the plot since the excitations
studied involve mainly theπ electrons on the carbon atoms. A
cubic interpolation algorithm has been applied to smooth the
color changes in the plot. Off-diagonal elements corresponding
to coherences among bonded atoms are marked according to
the order of the bond: single (O), double (0), or triple (4).
Coherences among nonbonded atoms can be observed in the
plots as well, as for example between atoms 3 and 8 in Figure
4. The presence (absence) of coherences between distant
nonbonded atoms indicates the degree of localization of the
excited state.

In Table 1, we compare the lowest excitation energies
obtained using the CEO and other methods. The agreement is
good, in particular with respect to the Argus results.31 The results
from the other computational methods are reported as a
reference, since the molecules studied in refs 32 and 33 slightly
differ from the ones analyzed in the present work (they have a
shorter conjugation length, thus leading to higher excitation
energies).

The absorption spectrum of thetrans-polyacetylene oligomer
with five double CdC bonds C10H12 computed using the CEO

TABLE 1: Excitation Energies (eV) of the Lowest Excited State of Polyacetylene and Polydiacetylene Oligomers According to
Several Computational Methods

ZINDO/S-TDHF INDO/S-CI31 AM1/CAS-CI33 ab initio CASPT232

PA oligomer 3.37a 3.57b 3.86c -
PDA oligomer 2.84a 3.03b - 3.49d

a This work. b Computed for the same oligomers studied in this work with the Argus code.c Excitation energy for the PA oligomer with four
double bonds.d Excitation energy for the PDA oligomer with three triple bonds and four double bonds.

Figure 5. Bond length trajectories for the polyacetylene oligomer following an impulsive vertical excitation to the first allowed state (Ω ) 3.37
eV). Note the increased (reduced) lengths of double (single) bonds in the first few femtosecond, shown by the solid (dotted) lines. The amplitude
of the bond length oscillations is determined by the difference in the equilibrium geometries between the excited state and the ground state. A time
step of 0.5 fs has been used in the MDCEOV computation.

êAA ) ∑
i∈A,j∈A

êij (22)

êAB ) [ ∑
i∈A,j∈B

êij
2]1/2 A * B
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approach is shown in Figure 2; the spectrum has three peaks.
Peak a corresponds to the HOMO-LUMO transition, and it
has a strong intensity. The associated CEO mode represents a
collective excitation of the central single and double bonds
ranging from atom 3 to atom 8. This mode has a coherence
size (off-diagonal spread of the mode) of about 6 Å, corre-
sponding to the distance between atoms 3 and 8. Peak b
represents a more independent excitation of the central double
bond and the two terminal double bonds. A strong coherence
is present between atom 3 and atoms 5 and 6, forming the central
double bond; in a symmetric way, coherence is observed also
between atom 8 and the atoms of the central double bond.
Finally, peak c is the excitation on the central single bonds (e.g.,
the 4,5 and 6,7 bonds) with an associated coherence involving
the atom 1,2 and the atoms 3 and 4 (and symmetrically atoms
9,10 and 7,8)

The absorption spectrum of the PDA oligomer shown in
Figure 3, together with the CEO eigenvectors. The spectrum

shows four transitions. The a peak is a strong band correspond-
ing to the HOMO-LUMO transition. The associated CEO mode
shows an exitation spreading over the three central triple bonds,
and it also involves the two central double bonds, as can be
inferred by the triangle and square markers which correspond
to the position of the triple and double bonds, respectively. This
excitation has a maximum coherence size of 6 Å, corresponding
to the distance between the carbon atoms 12 and 7. The
coherence size is determined by the extent of the interactions
amongπ electrons and in our case is ultimately determined by
the matrix elements of the ZINDO/S Hamiltonian (t andV). In
the case of the a mode, the exciton size is smaller than the
molecular physical size; the excitation thus resides mainly on
the center of the oligomer and does not extend appreciably to
the ends. The higher-energy modes of the PDA oligomer are
more localized. They consist of various combinations of
excitations centered on the triple bonds. In particular, mode b
is mainly the excitation of the central triple bond, whereas mode

Figure 6. Fourier transform of the trajectory of Figure 5 and of the time evolution of the relevant bond angles; notice that the spectra show no
strong coupling of the stretching degrees of freedom with lower-frequency bending motions (CCC bendings).

Simulations of Conjugated Oligomers J. Phys. Chem. A, Vol. 105, No. 29, 20017065



c represents the excitation of the terminal triple bonds. Finally,
mode d is the collective excitation of the three central triple
bonds, with a stronger excitation on the central bond.

We have performed molecular dynamics computations on the
PA oligomer, which is known to be long enough to show the
features of the ECC coordinate.16 CEO computations show that
the first excited state of this system has a large contribution
from the HOMO-LUMO transition. In polyenes, the HOMO
charge distribution is centered on the double CdC bonds,
whereas the LUMO is centered on the single C-C bonds. Upon
excitation, we thus expect some bond charge to move from the
double bonds to the single bonds. This implies that the single
C-C bonds in the excited state are stronger than those in the
ground state, whereas the double CdC bonds are weaker. For
that reason, the equilibrium double-bond (single bond) length
is longer (shorter) in the excited state. We thus expect that upon
excitation the main nuclear relaxation process should involve
the stretching of carbon-carbon bonds. This is supported by
the CEO transition density matrix for the first excited state
displayed in Figure 4. The markers on the CEO plots show the
matrix elements corresponding to the bond order change for
double and single bonds. The figure shows that upon excitation
the bond order changes both for single and double bonds. This
is accompanied by an induced change of the atomic charges
upon excitation, as shown by the diagonal elements. The spread
of the excitation in the molecule can be estimated by looking
at the distribution of the large elements in the transition density
matrix along the diagonal and the antidiagonal directions. For
this polyacetylene oligomer, the excitation extends mainly from
atom 3 to atom 8, covering a coherence length of 3 double
bonds.

We have studied the nuclear relaxation following an impulsive
excitation from the ground state to the first allowed excited state,
with a transition energy of 3.37 eV. The time evolution of the
CC and CH bond lengths is shown in Figure 5. A Fourier
transform of the carbon-carbon and carbon-hydrogen bond
length trajectories depicted in Figure 6 shows no strong
interaction between carbon-carbon stretching and CCC bend-
ing; the Fourier spectra of the CC stretching do not show any
other peak except that for the CC vibration. On the other hand,

the spectra of the CCH bendings contain a strong CC stretching
component. This behavior is different from that of polydiacety-
lene, where carbon-carbon stretchings and CCC bendings along
the chain are coupled, as will be illustrated below. Our
computations further show that the ultrafast nuclear relaxation
following an ideal impulsive excitation is dominated by the ECC
coordinate: the behavior of the energy along the trajectory can
be explained using thisR relaxation coordinate. To that end,
we introduce a simple harmonic model for the excited-state
dynamics

We set the zero of the energy scale and ofR at the ground-
state minimum.R is the relevant vibrational coordinate which
couples the ground and the first excited state, andk is its force
constant. It is defined through a linear combination of C-C
(Ri) and CdC (ri) stretchings, which are out of phase

The coefficientsRi can be computed using the output from the
molecular dynamics computation. Let us denote byA(Li) the
mean amplitude of oscillation of a given bond lengthLi. If the
bond length dynamics is harmonic, the amplitude is given by

Here 〈Li〉 is the time-averaged bond length during the time
interval T

Figure 7. Fourier transform of the trajectories of the ground-state energyE0, the excitation energyΩ, the first excited-state energyE1, and theR
coordinate for the polyacetylene oligomer (see text for details).

E0 ) 1
2
kR2 E1 ) Ω0 + 1

2
k(R - R1)

2 (23)

Ω ) E1 - E0 ) Ω0 + 1
2
kR1

2(1 - 2
R
R1

)

R )
R1r1 - R2R2 + R3r3 - R4R4 + R5r5 - R6R6 + R7r7 - R8R8 + R9r9

xR1
2 + R2

2 + R3
2 + R4

2 + R5
2 + R6

2 + R7
2 + R8

2 + R9
2

(24)

A(Li) ) x2x∫0

T
[Li(t) - 〈Li〉]

2 dt

T
(25)
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Using a set of bond lengths{Li} that enter the definition of an
ECC coordinate for a given molecule, we can express the

coefficientsRi as

Figure 8. Upper panel: single electron density matrix for the ground state of the PDA oligomer. The circle, box, and triangle markers point to the
matrix elements corresponding to the central single, double, and triple bonds, respectively. Hydrogen atoms are not shown. Lower panel: single
electron transition density matrix for the lowest electronic excitation of the PDA oligomer atΩ ) 2.8 eV.

〈Li〉 ) 1
T∫0

T
Li(t) dt (26)

Ri )
A(Li)

Amax
(27)
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Amax is the maximum amplitude of vibration in the given set of
bonds. The coefficientsRi for C10H12 obtained from the carbon-
carbon bond lengths trajectories are given in Table 2. The
solution of the equation of motion for the ECC

with the initial conditionsR(0) ) 0 andṘ(0) ) 0 are

whereω2 ) k/m. SubstitutingR(t) into eq 23, we obtain the
time evolution of the ground-state, excited-state, and excitation
energies

A Fourier transform performed on these trajectory for these
quantities of interest (E0, E1, Ω, andR) is shown in Figure 7.
The transition energyΩ oscillates with the same frequency (ω)
of R, whereas the excited-state energyE1 oscillates at twice

this frequency. The ground-state energyE0 has a strong (ω)
and a much weaker (2ω) component. These observations
confirm the simple picture offered by the model of eq 30.

Pump-probe experiments performed recently by Kobayashi
and co-workers on polydiacetylene (PDA)24 revealed details of
the geometry relaxation on the excited state. This includes the
geometry change from acetylenic to butatrienic geometry
involving carbon-carbon stretchings strongly coupled with in-
plane bendings along the chain. This change has been recently
studied by ab initio computations.32 We applied MDCEOV to
explore the dynamics of the excited state of a PDA oligomer.
By simulating an ideal vertical excitation from the equilibrium
ground-state geometry to the lowest excited state, characterized
by a vertical excitation energyΩ ) 2.8 eV, we followed the
classical nuclear dynamics on this excited-state surface for 1
ps. The first few femtosecond of the evolution of the carbon-
carbon bonds in the center of the oligomer show lengthening
of triple bonds and shortening of single bonds. This is a
consequence of the butatrienic form of the excited state, where
the single and the triple bonds become double bonds with shorter
and longer new bond equilibrium geometries, respectively (see
Figure 8). We examined the time evolution of the molecular
geometry by following the bond lengths and angles. The bond
lengths are depicted in Figure 9. The CH stretching vibrations
behave as simple uncoupled harmonic oscillators. This is to be
expected since high-frequency vibrations are decoupled from
other vibrational degrees of freedom. The time evolution of
carbon-carbon bond lengths is more involved since they are
more strongly coupled among themselves and with the bendings.
To analyze the nature of the dynamics of the carbon-carbon
stretchings, we showed in Figure 10 a Fourier analysis of the
bond lengths and bond angles in the center of the molecule,
where the changes induced by the electronic excitation are the
largest. The CH stretching vibrations appear isolated in the
spectrum, as suggested by the trajectory. In contrast, strong
interactions are clearly seen between the CC(2) stretch and the

Figure 9. Time dependence of the various bond lengths using the excited-state trajectories of the PDA oligomer. In the upper trace, single (double)
carbon-carbon bonds are represented by the dotted (solid) lines. For this impulsive excitation from the ground state, the amplitude of the bond
length oscillation is determined by the difference in the equilibrium geometries between the excited state and the ground state. A time step of 0.5
fs has been used in the MDCEOV computation.

TABLE 2: Coefficients ri for the Carbon-Carbon
Stretching Coordinates in the Definition of the ECC
Obtained from the Molecular Dynamics Simulationsa

bond C1dC2 C2-C3 C3dC4 C4-C5 C5dC6

Ri, i ) 1-5 0.62 0.73 0.90 0.98 1.00

a See text and eq 24. The coefficientsRi (i ) 6-9) are obtained by
symmetry, i.e.,R6 ) R4, R7 ) R3, R8 ) R2, andR9 ) R1. The numbering
of the atoms is shown in Figure 4.

mR̈ ) -
dE1

dt
) -k(R - R1) (28)

R (t) ) R1[1 - cos(ωt)] (29)

E0(t) ) 1
4
kR1

2[ 3 - 4 cos(ωt) + cos(2ωt)] (30)

E1(t) ) Ω0 + 1
4
kR1

2[1 + cos(2ωt)]

Ω(t) ) Ω0 + 1
4
kR1

2[4 cos(ωt) - 2]
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CCC(120) bending: a strong peak at the main bending vibration
frequency appears in the spectrum of the CC(2) stretching.
Weaker interactions can also be observed between CC(1),
CC(3) vibrations, and the CCC(120) bending. CC(2) and
CC(1) vibrations are also weakly coupled: a peak with the main
CC(2) vibration frequency appears in the spectrum of the
CC(1) vibration. These results, in particular the stretching-
bending coupling in the dynamics of the excited state, compare
favorably with experiment.24

To further analyze the dynamics, we carried out a vibrational
normal-mode analysis at the minimum of the excited-state
surface. The required second derivatives of the energy with
respect to the nuclear coordinates have been computed numeri-
cally from the knowledge of the gradient. The position of the
minimum has been estimated as the time average of the
coordinates during the dynamics, i.e.,x0 ≈ 〈x(t)〉. This is strictly
true for the dynamics of a displaced harmonic oscillator, but
we expect it to be a good approximation more generally. We
checked the computed Hessian and found only a few negative
eigenvalues of small magnitude, indicating that this is a good
estimate for the energy minimum. The vibrational normal
coordinatesqi(t) can then be used to express the nuclear
dynamics

L i is a vector in the nuclear coordinates space representing the
direction of motion in correspondence of theith normal mode.
The vectorsL i can be easily computed from the knowledge of
the Hessian matrix, as discussed in ref 34. The projection of
the dynamicsx(t) on three Raman active normal modes a, b,
and c is shown in Figure 11. The normal coordinates shown
are normalized with respect to the amplitudeAc of the mode
c, i.e., we plotqa(t)/Ac, qb(t)/Ac, andqc(t)/Ac. The vectorsLa,
Lb, andL c are also shown in Figure 11. Mode a is the in-phase
CtC stretching, whereas mode b is the out-of-phase stretching
of the central CtC bond with respect to all other triple bonds.
Mode c is a collective angular motion involving the backbone
of the molecule and corresponds to a contraction/elongation
along the chain axis. It is reminiscent of the LAM (Longitudinal
Acoustic Mode) motion, well-known in the vibrational dynamics

of polymers.35 The normalized coordinatesq(t)/Ac of Figure
11 show the coupling between CtC stretching motions and
angular motions (i.e., mode c). This behavior is consistent with
the previous analysis, in particular with the stretching-bending
coupling shown in the Fourier transform of the internal
coordinates (Figure 10).

In conclusion, we have demonstrated how a molecular
dynamics simulation combined with the electronic density
matrix can be effectively used for computing and analyzing the
nature of photoexcitations in conjugated oligomers. A notable
advantage of the CEO approach is that information about the
entire manifold of excited states can be easily generated in
parallel at each step. The evolution of the system can then be
computed in parallel on several excited-state surfaces. Nona-
diabatic couplingsAV0

xa ) -(êV|∂Fj/∂xR) may be readily com-
puted in the TDHF/CEO framework.36,37 This provides a
considerable computational advantage since these couplings are
essential for simulating processes occurring near conical
intersections, such as photoisomerization reactions.

Acknowledgment. This work was supported by the Chemi-
cal Sciences Division of the Office of Basic Energy Sciences
of the DOE. Funding from the Italian Ministry for Scientific
Research (MURST) is also acknowledged. We wish to thank
Dr. C. Castiglioni for many fruitful discussions.

Appendix A: The excitation energy gradient

A closed expression for the derivative of the excitation energy
ΩV can be obtained by differentiating the CEO eigenvalue
equation, taking into account the derivative of the normalization
condition, (êV|êV) ) 1, of the electronic normal modes. It follows
from the definition of the scalar product between Liouville space
vectors |ê),|η) (ê|η) ) Tr(Fj[ê†,η]) that (êV

x|êV) + (êV|êV
x) +

Tr(Fjx[êV
†,êV]) ) 0. Since the matrixFjx[êV

†,êV] belongs to the
particle-hole subspace, it is traceless, and we have (êV

x|êV) +
(êV|êV

x) ) 0. [It can be shown thatFjx is a particle-hole
(interband) matrix.19 The commutator of two interband matrices
êV

† and êV is an intraband matrix. Finally the product of an
interband matrix and an intraband matrix is a traceless interband
matrix.] The excitation energy is given by the following

Figure 10. Fourier transform of the time evolution of several bond lengths and bond angles at the center of the PDA oligomer. The labels of the
internal coordinates considered are shown in the right.

x(t) ) x0 + ∑
i

qi(t)L i (31)
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Liouville space matrix element:

Taking the derivative with respect to a generic nuclear coor-
dinatex, we get

The hermiticity of the Liouville operator with respect to our
scalar product makes it possible to act withL both to the right

and to the left, obtaining the following for the first two terms
of eq A2: ΩV[(êV

x|êV) + (êV|êV
x)] ) 0. This term vanishes

because of the condition on the derivative of the normalization
of the modes. The excitation energy gradient is finally given
by eq 16.
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